
“EXPONENTIAL FUNCTIONS FOR NON-LINEAR CONNECTIONS” 
SOFTWARE: CROSS-PLATFORM / SOFTIMAGE XSI 

RIGGING TUTORIAL 
LEVEL: EXPERT 

Written by Christoph Schinko, 2007 
 

1. INTRODUCTION 
 
Linking parameters 
via expressions is 
simple and powerful: 
no extra objects, f-
curves or 
constraints. Being 
simply math behind 
the scenes, they 
don’t need to be 
taken care of and can do 
extraordinary things for the 3D artist. 
 
However, sometimes the stiff, linear 
link we get from expressions is not 
exactly what we’re looking for. 
Especially when rigging a character, 
where bone-rotations or shape-
blends are driven by the surrounding 
rig-structure, we often need a more 
organic connection, a non-linear link. 
Something that, shown as a graph, 
looks like a quadratic or exponential 
function, rather than a straight line. 
[Fig.1] 
 
That way, bones wouldn’t start 
rotating so abruptly when the rig 
activates them, and shapes could 
finally work hand in hand with bone 
rotations. Unfortunately, XSI’s “link 
deform with orientation” feature 
cannot be trusted for complex rigs, 
as the links created are not editable 
later on. 
 
 
2. A LINEAR CONNECTION 
 
Our example for the day: The foot of 
a character. When the foot is lifted a 
certain amount (25°), the pants 
should start deforming to drape 
across the shoe. Due to the pants’ 
topology, this couldn’t be done with 
point weighting, so a correctional 
shape was modelled instead - now to 
be linked to the rotation of the foot. 
[Fig.2] 

Figure 2: The characters foot, bones & 
different lifting stages with the correctional 
shape blending in 
 
The usual approach is straight 
forward. We put an expression on the 
weighting parameter of our shape in 
the animation mixer and drive it 

through the rotation of the bone. As 
we’re dealing with a rotational range 
from 25°-55°, we need to transform 
that input to match it to a shape 
weight range of 0-1. To do that, we’ll 
subtract 25 from our rotation (giving 
us a range of 0°-30°), and divide that 
by 30. 
 
shape weight = (rot – 25) / 30 

As we don’t want the trousers to 
deform before the foot’s rotation 
reaches 25°, we’ll tell the expression 
only to kick in when the foot bone 
reaches that value. 
 
cond( rot < 25, 0, “OurExpression”) 
 
Or, for XSI to understand us: 
 
cond(footBone.kine.local.rotz < 25, 0, 
(footBone.kine.local.rotz – 25) / 30) 
 
What we have now is working, but as 
suspected, a linear interpolation is 
not really doing the trick for us. 

Somewhere along the foot’s rotation 
of 35°, the trousers will start 
intersecting with the shoes geometry, 
and the resulting motion will 
generally have an unnatural feel to it. 
[Fig.3] 
 
 

Figure 1: Linear vs. non-linear link 
 
What we need is the ability to edit 
that link we’ve just created, make it 
flexible. We need to be able to bend it, 
so that we can adjust that link until it 
gives us a smooth-looking motion 
and the geometries do not intersect.  
In this case: When the foot rotation 
hits 25°, the trousers’ correctional 
shape needs to start blending in very  

Figure 3: Why rotations and linear blends 
don’t work together 

 
slowly at first, and then faster and 
faster until its peak at 55°. 
 
Note: Of course one can use the 
foot’s rotation as a multiplier for the 
expression (outcome * footRotation 
and so forth), but it’s very tedious 
and also hardly editable later on. 
Furthermore, if you have to do this 
multiple times for your rig, and have 
to deal with different rotation-ranges 
and -directions every time, it’ll take 
up a lot of time and is therefore not 
recommended. 
 
Rather, let’s try to keep our function 
independent of the foot’s rotation, 
and come up with a mathematical 
function for that non-linearity we’re 
after. 
 
If we can get this to work, we have an 
adjustable curve, entirely without 
keys or time-dependent parameters 
– we still have just a simple 
expression that will keep on working 
for us no matter what we do to the rig 
or character. 



3. A NON-LINEAR CONNECTION 
 
Alright! First, let’s look at exponential 
function graphs, they seem to be the 
closest to what we want: a slow start 
at the beginning of the blend, growing 
faster and faster until it peaks. [Fig.4] 

Figure 4: Exponential functions 
 
Let’s start by choosing one of those 
graphs as a starting point; 3x looks 
like a curve that would fit well for our 
task. The curve looks steep enough 
at an x-value of 2, so we’d like to use 
the functions’ behaviour from x=0 to 
x=2. This is the only part of the curve 
we’ll use. We simply cut off the rest 
by transforming its x-value range 
much like before; “x” being the 
incoming rotation of the driving bone. 
 
Our example: 
bone rotation: 25° – 55° 
we want: x = 0 – 2 
 
Much like before: 
x = (rot – 25) / 15 
 
This gives us the following curve: 
 
f(x) = 3x = 3(rot – 25) / 15 
 
The first thing we’ll notice is that our 
graph starts at a f(x)-value of 1, as do 
all other exponential functions (or any 
number, for that fact) with an 
exponent of 0. 
 
We’ll simply subtract 1 from the 
result, giving us the following [Fig.5]: 
 
f(x) = 3x – 1 = 3(rot – 25) / 15 – 1 
 
This moves down the whole curve, 
which now starts at 0 (as does our 
shape) and ends at 8 (which we know 
how to handle). Just divide the 
function by 8 and we get a range 
from 0-1; perfect for shape blending 
and a ton of other rigging tasks! 
 
f(x) = (3(rot – 25) / 15 – 1) / 8 
 
So far, so good, but just out of 
curiosity: what if we wanted to use a 
different base for our function? 
Maybe 5x? 
 
 

Figure 5: The 3x function passing through 0 
 
How can we generally normalize all 
exponential functions to suit our 
need, sticking to our range from x=0 
to x=2? 
 

We will need to divide each function 
differently, in order to get our 0-1 
range. Let’s look at some examples 
[Fig.6]: 

Figure 6: Normalizing all functions by 
division 
 
Looking at the above picture, it 
becomes obvious pretty quickly that 
each exponential function needs to 
be divided through the square of its 
base, subtracted by 1 , (a2-1), in order 
to get a result of 1 at the end of our 
rotation range (x=2). 
 
→ We can now freely exchange the 
base of our exponential function and 
therefore get to use: ax 
 
Taking our function from before (3x – 
1), divided by what we just figured 
out (a2-1), results in: 
 
f(x) = (ax – 1) / (a2-1) 
 
This gives us an exponential function 
in which we can change the base and 
always get a curve that passes 
through the same start and end 
points (0,0 and 2,1) - much like two 
hinges, if you will - and can be bent 
freely between those two by 
adjusting the base value a. We can 
therefore cover a whole field of 
curves, from a strongly bent line to  
 

Figure 7: All functions passing through the 
same points 
 
one close to linearity (with the base 
towards 1). [Fig.7] 
 
Now our linked shape will slowly 
blend in with the growing rotation of 
a bone, and blend in ever faster until 
it is fully present. a will be delivered 
either by a null object (“baseNull”), a 
custom parameter, or is simply hard-

coded; whatever suits your 
rigging needs. 
 
The expression for our shape 
weight: 
 
pow( BaseNull, ( footBone – 25 
) / 15 ) - 1 / (BaseNull * 
BaseNull – 1 ) 
 
or 
 
pow( BaseNull.kine.local.posy, ( 
footBone.kine.local.rotz – 25 ) 
/ 15 ) - 1 /  

(BaseNull.kine.local.posy * 
BaseNull.kine.local.posy – 1 ))  
 
Looks like we’ve accomplished what 
we set out to do, but if we look a bit 
further, we’ll realise that this function 
can easily be enhanced to give us an 
even more powerful tool. 
 
 
4. ADVANCED NON-LINEAR 
BEHAVIOUR 
 
Inverting our curve to slowly descent 
first, is simply a matter of taking the 
negative results from our curve 
(mirroring it) and offsetting them by 
+1 (moving it up). [Fig.8] 
 
f(x) = (-1) * previousExpression + 1 
 
 
 



Figure 8: A new curve type 
 
Introducing a new parameter 
(“switch”) enables us to switch 
between those two behaviours. Is the 
parameter set to 1, we’ll get the initial 
function behaviour. Setting it to -1 
will result in the new graph. 
 
The expression would look like this: 
 
switch * (previousExpression) – 
(switch – 1) / 2 
 
or, more confusingly: 
 
switch.kine.local.posy * (pow( 
BaseNull.kine.local.posy, ( 
footBone.kine.local.rotz – 25 ) / 15 ) - 
1 / (BaseNull.kine.local.posy * 
BaseNull.kine.local.posy  – 1 )) – 
(switch.kine.local.posy – 1 ) /2 
 
With this setup, the switch parameter 
(+1 or -1) defines which of the two 
curves will be created in the 
expression-link, and the base-
parameter adjusts the curvature of 
the function graph. This base 
parameter has to be >1 in order to 
work (1 will result in a constant line). 
 
Finally, let’s look at two more curve 
types that might come in handy 
during the rigging process, depending 
on the situation and rotation direction  

Figure 9: Two more curve types 
 
you’re working on. This time the 
curves are starting off steep and slow 
in towards the end of the curve. 
[Fig.9] 
 
For this, the base of our function 
must be set to 1 divided by the base, 
so instead of 3x, it must be 1/3x, or 
better yet: 0.33x!! 
 

This means we don’t have to change 
anything to our setup to do this, we 
simply set the base parameter to a 
value smaller than 1! 
 
With our existing two parameters, the 
expression can be used to reach all 
four different types of graphs, and 
their respective areas towards 
linearity. [Fig.10] 

 
 
5. NEAT LITTLE PACKAGES 
 
The two custom parameters created 
to control the links’ behaviour can 
either be left in the scene, or 
eventually be hard-coded (the ideal 
value of the parameter actually typed 
into the expression, the parameter 
deleted) once a non-linear expression 

works well for the 
intended cause. 
 
Although there are 
other ways to 
organically link 
parameters, most 
solutions are 

either hard to control or become 
overly complicated and instable 
within the rig, especially when 
working with more than one rotation 
axis. 
The approach presented here is clean 
and easy to control, and more so, the 
behaviour can be adjusted visually, 
right in the viewport. 
 
Note: The outcome of the function 
can always be previewed by  

Figure 10: All 4 possible connection types 
and how they’re linked 

 
activating View>ShowGraph in the 
expression editor, and get this: the 
parameters could even be animated 
to create most complex, non-linear 
links, as shown below, all that with 
our little expression! [Fig.11] 
 
 

Figure 11: Connection curves with 
animated custom parameters 

 
Hopefully this tutorial has been 
helpful and inspired to experiment a 
bit with expressions and exponential 
functions. If you have any feedback, 
please feel free to e-mail me at any 
time. Enjoy! 
 
Written by Christoph Schinko in 2007 

office[@]christoph-schinko.com 
www.christoph-schinko.com 

 

mailto:office@christoph-schinko.com
http://www.christoph-schinko.com/

