
“ARM RIGGING FOR ANIMATORS” (STRETCHY CHAIN)
RIGGING TUTORIAL

SOFTWARE: SOFTIMAGE XSI
LEVEL: ADVANCED/EXPERT

Written by Christoph Schinko, 2006

1. INTRODUCTION

When setting up a
character, it’s easy to
dream about all the
great things it will be
able to do and how
simple it will be to
control and tweak. Along
the rigging process
though, many of these
ideas are discarded –
due to time constraints
and/or technical
difficulties.

One of the things an
animator typically
dreams of is the ability
to animate squash &
stretch, an integral part
of classical animation
that is often
professionally ignored in
3D setups. Of course,
the principals of S&S
can be implemented in the poses of
the character and the behaviour of its
extremities, but let’s see how the
wish list below can be implemented
into an arm rig that is functional, fast
and easy to control.

Squash & Stretch:
- Ability to over-stretch a skeleton
chain and toggle this behaviour
on/off
- Ability to reset any stretching
without losing the pose (along the
eff/root-axis)
- Ability to individually stretch the
upper and lower arm or both of them
together (eff stays in place)
- according volume changes in the
arm and toggle this behaviour on/off
- Manually offset and hand animate
those volume changes

- Offset the elbow in any direction
(totally independent of the rest of the
chain, for final pose adjustments and
the ability to “break” the joints as
described in “The animator’s survival
kit”)
- Switch from IK to FK (customizing
XSIs’ excellent FK/IK blending
abilities for this rig)
- Quickly lock down the hand in place
during animation (for holding onto a
table etc.)

- Roll divisions for upper and lower
arm for even rotation distribution on
the mesh

2. STRETCH

1. Create a 2-bone chain in the right
viewport and name the root “r_arm”,
the bones “b_upArm” and “b_loArm”,
and the effector “e_arm”. This
naming convention makes it easy to
follow this tutorial and allows for
quick selection from XSIs’ MCP,
using “b_*” etc.

2. In the ppg of each bone, set the
length of the upper arm to “3” and the
lower arm to “4”, to be able to work
with round numbers (but be able to
distinguish between them).

When moving the effector, those
lengths always remain the same,
until the arm is stretched and the
effector cannot be moved away from
the root any further.
By changing those length values, the
arm can be stretched – and again
returned to its original length.
These changes will be dependent on
the effectors’ position, or better: the
distance from the effector to the
chain root.
This distance can be measured via
an expression and further be used on
the length parameters of the bones.
To keep a better overview, it might be
helpful to create a separate object
that keeps track of this distance
measuring.

Figure 1: The finished setup

3. Create a null (name it “dist”) to
measure and at the same time
display the distance between the eff
and root.

4. Set an expression on the local y
translation of the null
(kine.local.posy), enter the following
expression and hit apply.

ctr_dist(r_arm.kine.global.pos,
e_arm.kine.global.pos)

When moving the effector now, the
null will move along its y-axis (you
can move it a bit to the side in z) to
the same value as the distance
between the root and effector.

5. Apply an expression on the length
of the upper arm, telling it that when
the distance from the effector to the
chain root is bigger than the sum of
both original bone lengths (hence, a
stretched arm), the bone will
gradually be stretched (to meet the
effector). The sum of the original
bone lengths (3+4 = 7) will be
referred to as straight arm distance.

cond(dist.kine.local.posy > 7, 3 +
(dist.kine.local.posy – 7) / 2, 3)

This means: When (the distance is >
bigger than the straight arm distance
(3+4), THEN set the bone length to its
original value (3) + HALF of the

difference (as it’s 2 bones) between
the actual distance (dist) and the
straight arm distance (dist – (3+4)).

6. Apply the same expression to the
lower arm, taking into account that
its original length was 4, not 3

cond(dist.kine.local.posy > 7, 4 +
(dist.kine.local.posy – 7) / 2, 4)

Now the effector can be pulled from
the root as far as you like, and the
bones will stretch accordingly and
also compress back to their original
lengths and behave normally.

Figure 2: Overstretching the arm chain

When testing this, the need for the
following 3 things will immediately
arise:
- The ability to lock the chain to
behave normally, at its original length,
- The ability to bend the arm while
being overstretched,
- And the ability to squash the arm
smaller than its original length.

3. RESET AND LOCK

As it might be better to block in any
animation with a “locked”, fixed-
length chain and only animate over-
stretching later on, the ability to
disable the chains stretchiness is
important.
Also, when posing a
character, it will be
nice to be able to
reset any accidental
over-stretching,
making the arm snap
back to its original
length without losing
the pose (along the
eff/root-axis).
A condition in the
length expressions

can take care of that, only allowing a
change of bone lengths when a new
reset-and-lock parameter is 0. As the
bone lengths both rely on the
measured distance, it’s easiest to go
in there to control the bones’
behaviour.

7. Create another null
(“resetAndLock”), then

8. Change the expression of the
“dist”-null to the following

cond(resetAndLock. kine.local.posy
== 0, ctr_dist(r_arm.kine. global.pos,
e_arm. kine.global.pos), 7)

This will cause the
dist-null only to
measure the distance
between the root and
effector when the
resetAndLock-null is
at 0. At any other
value, the distance will
be set to “7”, the
original straight arm
distance of the chain
– resulting in the
same normal chain
that was created in
the beginning.

4. STRETCH OFFSET

Other than resetting
and locking the

stretch of the chain, it might be nice
to individually stretch each bone
separately, or both at the same time
– with the effector locked in place,
though. Note that these offsets can
also be used to have the chain bend
while being overstretched. And they
also provide the ability to hand-
animate actual squashing of the
bones.
This will be controlled by 3
parameters, respectively setting the
stretch-offset for the

a) Upper arm
b) Lower arm
c) Both arms at once

9. Create 3 objects to provide those
parameters (“stretchUp”, “stretch”
and “stretchLo”).

This time, their scaling will be used to
stretch the bones. Their scaling
values will simply be added to the
length-expressions on both bones.

10. Edit the expression on
upArm.bone.length.

Before:
cond(dist.kine.local.posy > 7, 3 + (
dist.kine.local.posy - 7) / 2, 3)

After:
cond(dist.kine.local.posy > 7, 3 + (
dist.kine.local.posy - 7) / 2, 3) +
stretch.kine.local.sclx +
stretchUp.kine.local.sclx - 2

The “-2” is to compensate for the
control objects’ initial scaling values
(of 1 each), so a scaling of “1” means
no offset (0).

11. Do the same for the
loArm.bone.length (remember that
it’s original length was different)

cond(dist.kine.local.posy > 7, 4 + (
dist.kine.local.posy - 7) / 2, 4) +
stretch.kine.local.sclx +
stretchLo.kine.local.sclx - 2

But now the effector will still follow
the bones, as it is not constrained to
a rig control object yet.

12. Position constrain the effector to
a control object (“c_arm”).

5. NULLS

By now, there’s a bunch of different
nulls in the scene, to help with the
expressions. Of course, those
expressions could refer to different
parameters of a single null, or a
custom parameter set, with the
necessary parameters stored in there
(be aware that XSI doesn’t like a
CustomPSet with certain parameters
to be stored under any object of the
chain – it will report a dependency
cycle).

Also, all expressions could be driven
by actual control objects of the
character rig, implementing all
functionality right into the 3D view,

Figure 3: Expression editor

Figure 4: Individual bone stretch offset

which is most desirable for the
animator. However, it is advisable to
use separate nulls for setting it all up,
as they give a good overview and are
easy to track down in case of
problems or unexpected behaviour.

6. ELBOW OFFSET

Let’s move on to a different part of
the setup now, a control object that
follows the elbow of the arm and can
offset it through simple translation.
The root and effector stay in place,
but the elbow can be freely moved to
any desired position in any direction
– so this is very different to an
upvector constraint.
This feature is useful for perfecting a
pose that would look just a bit better
if the elbow could be tweaked in
some anatomically incorrect way,
even if just for a few frames.
In the legendary book of Richard
Williams, “The Animator’s Survival
Kit”, he often talks about “breaking” a
joint to achieve a better-looking
animation. With this elbow offset, it
can easily be realized in 3D.

To set it up, a second chain will be
created to follow the original chain. It
will actually be two one-bone chains,
rather than a single chain, and will
simulate a 2-bone chain that is
defined through the elbow offset
object.

13. Create a control
object for the elbow
(“c_elbow”) and
match its
translation with the
b_loArm bone.

14. Parent it to that
b_loArm bone, so
that it always stays
at the elbow, and
can easily be
animated from
there.

15. Draw two 1-
bone chains,
exactly over the
two original bones.
This is best
accomplished
using the snapping
(to center) tool.
Name them
offsetUp
(r_offsetUp,
b_offsetUp,…) and
offsetLo.

16. Position
constrain the first
new bone to the

original root and the elbow control
object, and the second new bone to
the elbow control object and the
original effector. Like this:

a) r_offsetUp -> r_arm
b) e_offsetUp -> c_elbow
c) r_offsetLo -> c_elbow
d) e_offsetLo -> e_arm

Figure 5: Offsetting the elbow

17. Hide the new roots and effectors
to get a better overview.

You can see that the elbow offset is
already working, and it can easily be
reset to 0 by hitting Ctrl+Shift+R. But
the new bones need to adjust their
lengths properly, as the geometry will
later be enveloped to them (to follow
the elbow offset). This can be done
just like before, using the distance
between the elbow control object and
the original root, etc.

18. Apply the following expressions

a) b_offsetUp.bone.length:
ctr_dist(r_arm.kine.global.pos,
c_elbow.kine.global.pos)

b) b_offsetLo.bone.length:
ctr_dist(e_arm.kine.global.pos,
c_elbow.kine.global.pos)

That looks a lot better now. But when
you set an upVector on our original
chain, you’ll notice that the new
offset bones are not following the x-
rotation of the original bones. This is
easy to fix for the offsetLo bone.

19. Create an upvector object
(“c_upVec”), select b_upArm and set
its upvector, using
Create>Skeleton>ChainUpVector.

Move c_upVec around to see the
rotation problem with the offset
chains. Instead of position
constraining r_offsetLo to c_elbow,
use a pose constrain to take care of
that rotation issue.

20. Delete position constrain of
r_offsetLo and pose constrain it to
c_elbow

Now it will always have the same
rotation as the original lower arm
bone. For the offsetUp bone it’s not
that simple, but let’s leave it for now,
as a more convenient solution will
emerge later on in the process.
Before moving on, parent the newly
created offset chains under the root
of the original arm chain, just to clean
things up a bit.

21. Drag and drop r_offsetLo and
r_offsetUp under r_arm

7. VOLUME

When stretching out the chain now,
an enveloped arm would follow and
grow longer, but it actually wouldn’t
retain its volume, it will keep its
thickness – unless the y and z axis of
the bones are scaled down
proportionally to the growing length.

22. Apply an expression to the y
scaling of the upper arm – the
b_offsetUp bone, as the arm will be
enveloped to the offset bones. To get
an indirect proportional relationship
between the length and the scaling,
the scaling will be 1 divided by the
length of the bone.

1 / (b_offsetUp.bone.length – 2)

When the chain is not overstretched,
the bones’ scaling should be 1. An
outcome of “1 / 1” will do that, so 1
will be divided through the original
bone length (3) – 2.

23. Set the same expression on the
SclZ parameter. Do not just drag and
drop the SclY parameter onto the
SclZ parameter for XSI will report a
dependency cycle.

Now the upper arm retains its volume
when overstretched. When
animating, you will find though, that
it’s not always nice to have “proper”
volume scaling. It might look much
better without it, or cheated
manually.

24. Create a new null (“volScale”) and
use its local PosY to turn the volumic
scaling on or off.

25. Change the SclY expression of
the upper arm to turn off volume
scaling by setting the volScale null to
y=0.

cond(volScale.kine.local.posy == 0, 1,
1 / (b_offsetUp.bone.length - 2))

26. Use the x-translation of that
same volScale null to offset the
volume scaling manually, and be able
to cheat, cheat, cheat.

cond(volScale.kine.local.posy == 0, 1,
1 / (b_offsetUp.bone.length - 2) +
volScale.kine.local.posx)

27. Apply the same changes to the
SclZ expression.

28. Do the same procedure for the
lower arm b_offsetLo (SclY and SclZ)

cond(volScale.kine.local.posy == 0, 1,
1 / (b_offsetLo.bone.length - 3) +
volScale.kine.local.posx)

8. WRIST SETUP AND CONTROL

Let’s quickly setup a wrist chain and
think about how it is best to be
controlled for animation. There are
two basic principles: either the wrist
rotation follows the arm effectors’, so
the hand is always in line with the
lower arm bone, when moving the
arm around. Or the wrist rotation
remains fixed in global space when
moving around the arm, meaning it
will always point in the same global
direction and not follow the lower
arm in rotation.
Both methods have their advantages
and disadvantages. When posing a
character, or animating a swing of
the arm, it is more natural if the wrist
follows the lower arm rotation, and
any additional animation will be easy
to control by f-curves, as we know its
0,0,0 rotation always points straight
away from the arm.
However, this behaviour is not so
welcome when the arm is animated
and its upvector adjusted later on
(the whole hand animation would
change with it) or if there’s
interaction with another scene object
(when lifting an object straight up for
example).

Therefore, to get the best of both
worlds, let’s try and set up a wrist
control that can to both, and the
animator can switch back and forth
between the two behaviours.

29. Draw a 1-bone wrist chain in the
right viewport and name the new
objects r_wrist, b_wrist and e_wrist

30. Match the rotation of “r_wrist” to
the original effector “e_arm”, and zero
out the rotations of the wrist BONE
“b_wrist”, so that its z-rotation will
rotate the hand towards and away
from the body, with the arm in its
natural resting pose.

31. Copy the c_arm control object
(“c_wrist”) and set it a bit smaller. It
will control the rotation of the hand.

32. Create a null (“wristBuffer”),
match its translation to the “c_wrist”
object and its rotation to “e_arm”.

33. Parent “c_wrist” to “wristBuffer”
and zero out its rotations.

34. Orientation constrain the wrist
bone “b_wrist” to the wrist control
“c_wrist”.

35. Position constrain “r_wrist” to
“e_arm”

36. Position constrain “wristBuffer” to
the arms effector “e_arm”

37. Now constrain the orientation of
the “wristBuffer” null to “e_arm” and
lock the constraints ppg.

Its active-flag will be used to switch
between the two behaviours – either
the control objects (and therefore the
wrist) will follow the effectors
orientation or not.

38. Link the activeness of the
constraint to the SclX parameter of
“c_wrist”, to be able to switch
behaviours right from inside the
viewport

cond(c_wrist.kine.local.sclx < 1, 0, 1)

Play around with it to see if this setup
suits you. It’s quite comfortable to
quickly pose the character with the
wrist following the arm and be able to
switch this following off and still keep
the f-curves simple, local to the
effectors rotation.

Note: Be aware that the wrist could
cause gimbal lock during animation.
You can try different rotation orders
within the kinematic properties of the
wrist bone (YZX works quite well for
me), or follow other tutorials on how
to get around gimbal lock – like the
common approach to split up the
rotation axis onto different objects.

9. ARM & HAND LOCK DOWN

Another thing that is always needed
during animation is the ability to
quickly lock the hand in place, when
holding on to a table for instance.
This is easily realized by position
constraining the arm control and
orientation constraining the wrist
control.

Figure 6: Wrist setup

39. Create an object that the arm and
hand will snap and be locked to
(“handSnap”). It should give a visual
cue as to which way the hand will
point when constrained.

40. Save a translation key on “c_arm”

41. Position constrain “c_arm” to
“handSnap”

42. Set an expression on the “active”
parameter of the position constrain

cond(c_arm.kine.local.scly < 1, 1, 0)

This will use the scaling of the
control object to switch behaviours.
When “c_arm” is scaled down in y,
the arm snaps to the “handSnap”
object and stays locked there.
Let’s do the same for the orientation
of the hand.

43. Orientation constrain “c_wrist” to
“handSnap”

44. Set the same expression on the
“active” parameter of the orientation
constrain

cond(c_wrist.kine.local.scly < 1, 1, 0)

By animating the scaling, the two
constraints can be set independently
of one another, depending on the
situation at hand. Also, the blending
slider of the constraints are still
available for animation, enabling the
animator to blend these switches
over time if necessary.

A convenient resting place for the
“handSnap” object should be found –
one where it’s not in the way, but
easily accessible when animating. It
could follow the overall arm root,
together with other objects, that
control many of the parameters
we’ve set up so far (see next
paragraph).

10. VISUAL FEEDBACK

There’s a lot of functionality and
different options in this rig right now,
which might be confusing for the
animator. Therefore, it is advisable to
make things a bit clearer, provide
information and possibly visual
feedback about what’s going on right
now.

Add annotations to all control objects
that have special functionality, for
example when scaling it in y.

45. Select “c_arm” and apply
Get>Property>Annotation

46. Write, for example “sclY < 1
activates POSITION constraint to
handSnap object”. Do the same thing
for all control objects that might be
confusing or unclear. The annotation
property can be brought up at any
time when the object is selected, just
hit “Selection” in the MCP or look in
selection-mode in the explorer –
you’ll find the reddish annotation
icon.

Another easy way of clearing things
up is by changing the colour of
control icons or bones when
stretched. This is done by setting an

expression on the display colour of
each object, and telling it that, “when
bigger than 1, turn red”, for example.

47. Select “b_upArm” and isolate it in
the explorer. Notice how its “Display”
settings are spelled in italic, that
means that they’re shared with the
rest of the scene and need to be
made local to this very object before
changing anything.

48. Click on the “Display”-icon and hit
“Yes” (make local) in the dialog box.
Now, “Display” is not written in italic
anymore.

49. Expand the display options in the
explorer and set an expression on the
“colour” property

cond(b_upArm.bone.length > 3, 15, 0
)

“15” is a nice bright red, so every time
the bone is longer than its original
length (3), its wireframe display
colour will switch to red. This would
also be good for the stretch offset
control objects, to be able to see if
there’s a stretch offset applied or not.
Here, it might even be better to make
it turned red when it’s bigger OR
smaller than 1 (“!=” is the expression
command for “not equal to” – look
under “Function>Conditions” in the
expression editor for more). Maybe
even set it up with two conditions:
turn red when bigger than 1.1 or
smaller than 0.9, to have a bit of
room in between – that way it is
easier to find back to zero when not
working numerically.

50. For the elbow offset bones it is
nice to be visible only when the elbow
is actually offset. Set an expression
on their view visibility,

cond(c_offset_l_arm.kine.local.posx
== 0 &&
c_offset_l_arm.kine.local.posy == 0
&& c_offset_l_arm.kine.local.posz ==
0, 0, 1)

and maybe set their colour to a bright
yellow (“126”) to always be able to
spot them (check the history of the
script editor to find out the exact
colour-values you’re setting).

Last but not least, when the rig is
working the way you want it to,
simplify it by slowly getting rid of all
those helper-nulls and replacing
them with more visual controls,
implemented into the rig. It might
take a while to edit all expressions to
work with the new objects, but it pays
off as soon as you start animating!

Figure 7: Chain option control icons

11. FK/IK (forward kinematics /
inverse kinematics)

Another important decision when
animating arms especially is whether
to use FK or IK. Now, this arm has
obviously been set up for IK, but with
Softimage XSIs’ excellent
implementation of FK/IK blending, it
would be a shame not to adjust our
rig to be able to take advantage of
these features.

XSIs’ FK/IK controls can be found in
the “Kinematic Chain Properties”
under the FIRST bone of each chain.
The “FK/IK blend” slider allows to
effectively blend between the two
animation methods.

The only thing preventing our arm to
be animated in FK right now, is the
position constraint of its effector to
the c_arm control object. However, if
we drive the activeness of this
constraint with an expression, it can
be de-activated by, for example,
scaling our c_arm object down, and

at the same time drive the FK/IK
blend property to tell XSI that it’s an
FK chain now.

51. Set an expression on the blending
of the “e_arm” effectors’ position
constraint

c_arm.kine.local.sclx

52. Set the same expression on the
FK/IK blend property of the chains’
Kinematic Chain properties.

Now, whenever the c_arm control
object is scaled down in x, XSI will
blend from an IK to an FK chain, and
the effectiveness of the effectors’
position constraint will proportionally
grow weaker, until – at a scaling of
x=0 – the system will be forward
kinematics.

Simply animate the scaling to blend
from IK to FK and vice versa!

The scaling of
the control icon
at the same
time visualizes
the behaviour,
but let’s also
activate shadow
icons for the
arm bones, so
that they can be
grabbed easily
when animating
in FK mode
(these can be
driven by

expressions as well, to only “appear”
when in FK mode).

12. WEIGHTING HELPERS

To finish the arm rig off, some
weighting helpers will be added.
Usually, it can be quite tedious to
properly weight the lower arm to
show a nice roll when the wrist is
rotated in x. This is due to the nature
of the enveloping algorithms that do
not interpolate rotations within one
enveloped bone. There’s numerous
approaches on how to overcome this
problem, from a 2nd bone along or the
opposite way to the lower arm bone,
to well thought out, anatomically
correct rigs of the lower arm
structures. However, in this tutorial,
helper-objects will be positioned
along the lower arm, to dampen the
wrist rotation towards the elbow.

The same problem applies for the
upper arm and its behaviour when it
is rotated in x. The part close to the
shoulder stays pretty much in place,
but down the upper arm the flesh
rotates successively more with the

bone underneath. The same
approach can be utilized here.

Those helper nulls are usually called
“roll divisions”, and can be created
automatically with the rigs that are
implemented in XSI. They’re really
cool, by the way, all set up with
super-fast scripted operators and
what not, so be sure check them out!
Now, however, we will manually set
up them roll divisions (yes, I’ve lived
in the UK for a while), if only to
deepen our understanding and come
closer to rigging-nirvana.

THE LOWER ARM

53. Create a null (“h_loArmRoll”) and
parent it under the “b_offsetLo” bone,
the elbow-offset bone that will
actually be enveloped.

54. Set up a 2-point-constraint and
pick the “c_elbow” and “e_arm”. Lock
the constraints’ ppg.

The “distance percentage” will be
used to distribute a number of
helping nulls along the lower arm

55. Switch OFF the active flag in the
upVector tab (otherwise the object
will not be able to fulfill the
expression set next)

56. Set an expression on RotX of the
helper null

b_wrist.kine.local.rotx / 2

From now on, the x-rotation of
“h_loArmRoll” will be half the x-
rotation of the wrist bone.

57. Copy “h_loArmRoll” three times

58. Adjust the “distance percentage”
in the 2-point-constrain ppg for each
new null, evenly distributing them
along the lower arm. 25%, 50%, 75%
and 100% (to have one at the wrist
itself).

To do this quickly, select the first null
in the explorer, open the constraints’
ppg (“select” in the MCP) and set this
ppg to “similar” (the “two eyes”-icon
beside the lock-ppg icon). Set the
distance and select the next null in
the explorer – the ppg will update to
the new nulls’ constraint ppg.

59. Select all “h_loArmRoll” nulls and
hit “0” to open the expression editor.
Adjust each expression to ensure
even roll distribution. The null at the
wrist could be /2 the rotation of the
wrist (if the character is wearing a
shirt which doesn’t need to follow the
wrist 100%). The next null /4, then /8

and /16 of the wrists’ rotation, as
we’re getting closer to the elbow.

b_wrist.kine.local.rotx / 16

When rotating the wrist in x now, the
nulls show how evenly the rotation
will be distributed onto the mesh.

60. To be sure to avoid unexpected
behaviour when resetting one of the
arms control objects, set the Y and Z
rotation of all “h_loArmRoll” nulls to 0
(by an expression on each
parameter).

61. Also, as the geometry will be
enveloped to those new nulls, the
volume scaling of the arm needs to
be implemented into those nulls.
Here it is enough, however, to set the
right expression for SclY and SclZ on
ONE of the helper nulls, and simply
link the other ones to it.

Figure 8: Arm roll divisions

THE UPPER ARM
Similarly, helper nulls can be set up
for the upper arm roll.

62. Create a null and 2-point
constrain it to r_arm and c_elbow.

63. Disable both tangent and
upVector in the constraints’ ppg.

64. Set a direction constraint towards
c_elbow

When you picked c_elbow first in step
54. be sure to set the direction
constraint towards r_arm. If you’re

unsure, enable “relation” display
under the eye-icon above your
viewport.

65. Now set the RotX of the helper
null to be / 2 of the original upArm
bone rotation (“b_uparm”, not the
elbow offset upArm bone).

66. Lock its other rotation axis to 0
using expressions, like before.

67. Copy the helper null 4 times,
offset the distance percentage of the
2-point constraints and edit the RotX
expressions to gradually subdue the
arms rotation towards the shoulder –
like you did for the loArm earlier.

This “h_upArmRoll” nulls don’t need
to be parented under the
“b_upArmOffset”, and in fact, the
“b_upArmOffset” isn’t needed at all
anymore! So, go ahead and delete it if

you like, or keep it for visual
feedback. However, you will now see
why it wasn’t necessary to fix its
rotation problems with the upVector
earlier in step 20 (actually, you could
do the same with the “b_loArmOffset”
and its helpers).

ELBOW HELPER

Now you might set another null to the
elbow and give it half the rotation of
the lower arm, just to make things a
bit easier when weighting and to keep
the elbow geometry where it should
be. Of course, it can also be linked to
the lower arms rotation and relative
values be set on the nulls translation,

to make the elbow come out a bit –
and so on and so forth…

13. MIRRORING THE ARM RIG

When mirroring the arm rig onto the
other side of the character, be sure
that “freeze negative scaling” in the
Skeleton>DuplicateSymmetry
dialogue box is OFF. You do want to
duplicate the constraints, yet
sometimes it happens that a control
object the snaps to an awkward
position. In this case, simply reset it
back to 0.
Having said that, of course, I’m
assuming that the control objects are
zeroed-out in their default position.
You can do that easily by selecting
Create>Skeleton>SetNeutralPose for
each control object.
Also be sure to adjust the
expressions for the roll divisions to
work correctly on the other, mirrored
side! (eg. set them to “– wrist
rotation / 2”etc)

14. SCRIPT

Obviously, it’s quite a bit of work to
transform a chain into this setup. It
can be quite time consuming for let’s
say both arms and both legs of a
character – especially when later on
the chains need to be moved and the
rotation points adjusted. Then all
expressions for the bone lengths, the
distances etc. would need to be re-
adjusted – quite tedious.
To avoid that, make sure that the
positioning of your bones is final, or
use a script to automate at least a
part of this process.

15. CONCLUSION

We now have completed a quite
advanced arm rig for a character. It is
especially tailored to the needs of
animators and should be able to fulfill
most of their needs. Naturally,
different animators like different rigs
or approaches, but I hope that this
tutorial has given you enough
information or ideas to come up with
your own specialties for controlling
the movement of an arm.

Written by Christoph Schinko, 2006
office@christoph-schinko.com

www.christoph-schinko.com

mailto:office@christoph-schinko.com
http://www.christoph-schinko.com/

